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1. Introduction

Live-fire testing makes evident the lethality of a munition or the vulnerability of a target.
From previous and current live-fire test programs, targets have been armored vehicles. For
munitions, live-fire testing exhibits munition lethality by showing the ability of a munition to
destroy armored vehicles. For armored vehicles, live-fire testing exhibits vehicle vulnerability
by showing how susceptible a vehicle is to damage when struck by a munition. Of all
components in a vehicle, a certain subset is considered critical. Tactical functions will be
degraded when an encounter between a munition and an armored vehicle destroys critical
components or, at the very least, renders them nonfunctional or degraded. In each firing,
critical components that were rendered nonfunctional are the experimental outcome from a
test shot.

Before testing commences, predictions are made by using the vulnerability code, SQuASH
(Stochastic Quantitative Assessment of System Hierarchies). SQuASH simulates the inter-
action between a munition and an armored vehicle, and varies the capabilities of resulting
damage mechanisms primarily penetration and spall affecting critical components. SQuASH
also conducts sampling to produce vectors of component damage. Each element of the vector,
representing some critical component, identifies whether it has survived or has been rendered
nonfunctional by the action of damage mechanisms. Every vector represents some state of
damage. So, any state or vector identifies a specific combination of damaged components.
For each shot, generally 1000 trials are performed to produce distinct states or vectors of
component damage along with their observed likelihood of occurrence.

From SQuASH predictions, each component-damage vector represents a hypothetical
experimental outcome. Thus, test results can be compared with predictions. As part of a
consistency examination, test results are identified in the list of predicted component-damage
vectors. For some shots, no match may occur between test results and predictions. In such a
situation, there may be deficiencies in modeling. On the other hand, if modeling is accurate,
an insufficient number of samples for a comparison may have been selected in the predictions.
If too few samples have been taken, a question may be raised on how many samples are needed
to ensure that observing all possible component-damage states becomes likely.

When a munition perforates the armored shell of a vehicle, different damage mechanisms
produced by this interaction may render various components nonfunctional. Consider the
case where independence can be assumed between every possible pair of critical components.
In this case, probabilities for component loss are also assumed to be precisely known. Then,
the sampling question surrenders to mathematical investigation. For such an idealized case,
this report demonstrates the nature of the sampling problem. An illumination of the problem
is presented. However, no solutions are provided. Such solutions are heyond the scope of
this report.

A problem related to games of chance was proposed to Pascal by the Chevalier de Méré.
This problem became the seed for letter correspondence between Pascal and Fermat that
eventually laid the foundation for the mathematical theory of probability.* Throughout its

*E. T. Bell, Men of Mathematics, 1937, pgs. 85-89.




development, gambling and probability theory have been intertwined. In a similar vein, this
sampling question is related to a gambling problem that during the mid-1980s attracted the
attention of this author.

2. An Anecdotal History

In 1985, this author shared an office with three technicians. At that time, there was
more than usual interest in the Maryland LOTTO game, since no one had won the lottery
in several weeks. Hence, the jackpot had become excessively large. One day during lunch,
our branch chief came into our office and spoke primarily to two of the technicians. This
author’s interest was diverted from the then current efforts to what our branch chief was
saying. He had gathered inning numbers from the previous 14 weekly drawings. Tabulation
of these data, which he gave to the two technicians but which has since disappeared, listed the
drawn LOTTO numbers from 1 through 40, inclusive, with their corresponding frequencies
of occurrence. An interesting observation, which our branch chief pointed out, was that there
were six numbers that had not been drawn. So, he told t!.e technicians that they should play
those six numbers in the next LOTTO game: a typical gamblers folly! This author does not
believe that our branch chief actually thought those six numbers would be drawn, but rather
he told them that to drive both technicians nuts about a sure winner. (On the cther hand,
one never really knows about branch chiefs!) By the way, only one or maybe two of those
numbers that had not been chosen in the last 14 games were selected in the next drawing.

Although not a gambler and, hence, not a player of the Maryland LOTTOQ, this author was
still interested in this frequency tabulation due to a personal inclination towards numbers
and things mathematical. After the branch chief left our office, the technicians and this
author examined the frequencies. For some reason, which has since been forgotten, one of
the technicians had to leave the office and, after his departure, this author suggested to the
other technician that the fairness of the lottery could be examined by applying a statistical
procedure to these data. In a single LOTTO game, 6 numbered balls are drawn from 40
balls without replacement. After each game, the selected balls are replaced. Over many
games, the likelihood of drawing a specific numbered ball should be the same for all balls.
Selecting the Chi-Square test was the obvious choice to examine whether each of the 40
values had the same probability of being drawn, as opposed to some of them having different
probabilities. Expected frequency per lottery number was 2.1, because there was a sample
of size 84 (i.e., 6 numbers per drawing and 14 weekly drawings) and 40 ordinal values. In
applying the Chi-Square test, a minimal expected frequency of five is usually required to
have confidence in the outcome of this statistical procedure. To obtain this confidence, the
40 ordinal values were grouped into 10 classes of length 4 (i.e., ordinal values 1 through 4
were placed in one class, 5 through 8 were placed in the next, etc.). The frequency of each
class became the sum of frequencies of its corresponding four members. Now, expected class
frequency became 8.4. The result from applying the Chi-Square test supported a claim of
equal likelihood at the 5% level of significance. Thus, fairness of the lottery was supported
by this statist:cal measure.




Aside from examining whether the distribution of drawn LOTTO numbers was fair,
another aspect of these data was intriguing. A question arose in this author’s mind that
approximated the LOTTO situation: “Is it reasonable not to observe 6 distinct values when
sampling 40 ordinal values with replacement 84 times?,” as well as a more general question:
“What is the distribution of distinct values not observed when sampling m values with
replacement N times?” These questions were more difficult than the question of fairness.
Over a short period of time, this author was sufficiently interested in these questions to
investigate the distribution of number of unobserved ordinal values.

3. Mathematical Structure

In the more general case, this gambling problem is equivalent to taking samples of size
N with replacement from m lottery balls or jars or bins. It has a multinomial sampling
distribution,

_ N o en e (1)
zl!$2!"'zm!pl p2 Pm >

where both z; + 234+, = N and p; + p2+ - - + pm = 1. The multinomial distribution
can be collapsed into any of m binomial distributions,

N! N-z,
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for k=1,2,---,m. Consider the m Bernoulli random variables T} defined as
_ 0 =z ;é 0

Calculation of means and variances for these random variables becomes easier by using
the binomial distribution, expression (2), rather than the original multinomial distribution,
expression (1). Bernoulli random variables, Tk, have means and vrriances given by

plT] = (1—p)V (4)
] = 1-p)"[1-(1-pe)"]. (5)

Denote S as the sum of the m Bernoulli random variables, i.e.,
S=>Y Tk, (6)
k=1

then S has mean and variance given by
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Bernoulli random variables T; and T, i # j, are not independent, because both the sums of
z's and p’s are fixed. Hence, covariance terms do not necessarily vanish.

Difficulties exist in using the multinomial distribution to determine expressions for the
covariance terms. Similar to what was done in determining means and variances for the
Bernoulli random variables T, expression (1) can be collapsed into any of m(m — 1)/2
trinomial distributions,

N!

.’L'.'!.’L‘j!(N — Ty — 1'_,‘)

iy (1—pi —py)V = (9)

Covariance terms can be expressed as

CoolT5, Tj) = 3 3 (1 - WT)(m — WT;)Pr{T; = land T, = m] . (10)

=0 m=0

By using the trinomial distributions, conditions for evaluating the joint probabilities can be
determined

r=12,---,N-1 z; =
T;=0|z;=1,2,---,N-1| z;=1,2,---,N
z;+z; <N
z;=14,2,--- N z; =0
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and upon evaluation the probabilities become

T, =0 T, =1
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Using the joint probabilities, expression (10) simplifies to
Cov|T.T,) = (1 - p, - p,)" - u[TJulT}) . (11)

Thus, the variance of S, expression (8), becomes

SS= 3 3 (1= pu—p)" - ulSNulS) - 1) (12)

k=1 r=]l

k+#r

Recall, in the lottery problem, there was a concern about whether it was reasonable that
6 out of 40 numbers would remain unselected after 84 draws. As a test of the mathemat-
ical theory, a simulation was conducted to mimic the lottery problem. The computerized
simulation involved sampling equally likely ordinal values between 1 and 40, inclusive, as
representatives for lottery balls, with replacement 84 times. After sampling was completed,
a count of the number of values not drawn was made. The combined sampling and counting
session was then replicated 999 times for a total of 1000 sessions. These counts were then
tabulated as frequencies closely resembling the distribution of number of unobserved lottery
balls. Results from simulating the lottery problem are shown at Table 1. When 6 lottery
balls had remained unselected after 14 weekly drawings, simulation results indicate such an
outcome does appear reasonable.

TABLE 1.—Results from Simulating the Lottery Problem

Counts  Frequencies

18
56
158
201
209
175
108
51
15
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Using the frequencies, values for central tendency and vanability were calculated. In
comparing estimates, values from simulation differ from their theoretical values in only the
second decimal place. Magnitude of differences is well within inherent randomness of the
simmulation. The simulated and theoretical values are shown at Table 2.

TABLE 2.— Simulated and Theoretical Estimates for the Lottery Problem

Qbserved Erpected

Average 4.832 4.769
Standard Deviation 1.769 1.735

Now, S is the count of the number of lottery balls or bins or whatever that have not
been observed. Using expressions (7) and (12), some observations can be made concerning
the behavior of S. When N = 1, y[S] = m - 1 and 0?[S] = 0, because something will
always be selected with a sample of size one, thereby leaving m — 1 things not observed. So,
with N =1, § will always have a single-valued distribution. As N increases without bound,
both u[S] and 0?[S] will asymptotically approach zero, because as sample size increases the
chance that something will remain unobserved becomes less likely. So, as N grows large, the
distribution of S will approach in the limit a single-valued distribution. Between the two
extremes, S will have a mean that decreases with increasing sample size. S will be nearly
constant at both small and large values for N, but will have more variability at intermediate
values for N.

One would be tempted to use theoretical mean and variance in a normal approximation
for the distribution of the number not observed. In general usage, the normal would not
be appropriate, because the Central Limit Theorem is not applicable. Recall, S is the sum
of Bernoulli random variables that are neither independent nor identically distributed in
conjunction with samples taken with replacement from an infinite population.

The use of the normal for this specific lottery problem just happens to accurately mimic
the distribution of counts. A measure of the strength in using the normal is given by the
critical level for rejection (i.e., level at which one is forced to reject a claim of normality),
and in this particular situation it becomes 0.36 as measured by the Chi-Square statistical
procedure. This suggests for selected range of values for N and m or the ratio N/m that
the normal may adequately approximate the distribution. On the other hand, quality of a
normal approximation in this case may be just a coincidence.




4. Linkage to Live-Fire Sampling Question

Suppose in a live-fire test shot there are | components susceptible to possible loss, i.e.,
having component probabilities of kill, p.'s, between 0 and 1, by the action of damage
mechapisms produced by an encounter between a munition and an armored vehicle. Then,
there are 2' component-damage vectors. Each component vector, under the assumption of
component independence, has a state probability given by,

1
pe = [I2:(1 = p.)'"%, (13)

for k = 1,2,---,2' and where O; takes on a value of 0 or 1 depending upon whe he ith
component, respectively, survives or becomes nonfunctional.

Using state probabilities in expression (1) with m = 2!, the N samples have a multinomial
sampling distribution. Then, S is the number of distinct component-damage states not
observed. If W is denoted as 2' — S, then W represents the number of states actually
observed. So, W will have mean and variance given by

pw) = 2 - p[s] (1)
o} W] = %) (15)
in terms of S, or more explicitly as
2[
sW] = Y- (1-p)"] (16)
k=1
2 2
W = 3 Y (U-p-p)'-UU-1 (17)
k=1 r=1
k#r

with U/ = 2! — y[W]. W will be an increasing function of sample size. At N = 1, u[W]
will be 1, and as N increases, it will asymptotically approach 2. Like S, W will be nearly
constant at both small and large values fcr N, but will have more variability at intermediate
values for N.

5. Examples

Four examples that have been chosen to be simple, yet informative will now be considered.
They will be presented as two pairs, so the examples can more easily be compared, as well
as contrasted.

The first pair consists of two examples where they differ only in the number of components
susceptible to loss. In the 2 examples, the first has 5 components while the second has 10
components. In both examples, each component has a 0.5 probability of loss (i.e., a fair




coin-flip situation). There are 32 states in the first example, where each state has the
same probability of occurrence, i.e., 1/32. In the second example, there are 1024 equally
likely states, where each has the same state probability of 1/1024. The expected number
of observed states at selected values for N is shown at Table 3. In both examples, the
theoretical mean initially exhibits a nearly linear growth until it sharply slows. To obtain
a similar fraction of all states, more samples are required for 10 component case than for
5 component case.

TABLE 3.—First Pair of Ezamples: The Effect of Changing Only the Number of

Components
Five Components Ten Components
All Component Probabilities: 0.5 All Component Probablities: 0.5
32 States 1024 States
All State Probabilities : 1/32 All State Probabilities : 1/1024
N #(W] pwi/2 N W] uwis2
10 8.705 0.272 250 221.917 0.217
20 15.042 0.470 500 395.741 0.386
30 19.655 0.614 1000 638.542 0.624
50 25.458 0.796 1500 787.508 0.769
70 28.533 0.892 2000 878.904 0.858
90 30.163 0.943 3000 969.383 0.947
120 31.291 0.979 4000 1003.441 0.980
150 31.726 0.991 5000 1016.261 0.992

The third and fourth examples deal with the same number of components (five), but
differ in their components’ probabilities of loss. In the third example, each component has
a 0.7 probability of loss while the individual component probability of loss in the fourth
example is 0.9. There are the same number of component-damage states for each example.
In the third example, there are 32 different states having varying probabilities of occurrence:
1 with a 0.00243 probability, 5 with 0.00567, 10 with 0.01323, 10 with 0.03087, 5 with
0.07203 and 1 with 0.16807. Similar to the third example, the fourth also has 32 different
states with varying likelihoods of occurrence, but the list of probabilities differs from those
in the third example: 1 with a 0.00001 probability, 5 with 0.00009, 10 with 0.00081, 10 with
0.00729, 5 with 0.06561, and 1 with 0.59049. The expected number of observed states at
selected values for N is shown at Table 4 for both examples. Similar to what was exhibited
for the first pair, an initial growth of the theoretical mean is also nearly linear until it
drastically slows. Likewise, in achieving similar number of states, the example having a




common component probability of loss of 0.9 requires many more sampling trials than for
the example where the common component probability of loss is 0.7.

TABLE 4.—Second Pair of Ezamples: The Effect of Changing Only the Common
Component Probability of Loss

Five Components Five Components
All Component Probabilities : 0.7 All Component Probabilities: 0.9
32 States 32 States
Varying State Probabilities Varying State Probabilities
N uW] p(w]/? N u[W] uw)/2'
10 7.713 0.241 100 12.000 0.375
25 14.206 0.444 250 16.342 0.511
50 20.010 0.625 500 19.299 0.603
75 23.249 0.727 1000 21.987 0.687
100 25.307 0.791 2500 25.713 0.804
250 29.887 0.934 5000 27.687 0.865
500 31.400 0.981 10000 29.060 0.908
750 31.768 0.993 50000 31.338 0.979

In the four examples, certain behavior traits were exhibited. In all examples, almost linear
growth was exhibited for a small number of samples and that growth decreases as number
of samples increases. The number of samples necessary to achieve a similar proportion of
the total states appears to increase in the first two examples as both the number of states
increases and the likelihood of state probabilities decreases. In contrast, the amount of
necessary sampling appears to increase when state probabilities become both smaller and
larger in the last two examples. Some of these apparent trends are correct while others
are false. Indeed, the trends are a part of the subject matter for consideration in the next
section.

6. Discussion

If the examples from the previous section are arranged by number of trials required to
obtain a large percentage of all states, their rankings from least to greatest would be the first
example, the third example, the second example and the fourth example. When ordering
the smallest state probability in each example from largest to smallest, there is a one-to-one
correspondence between ordered probabilities and example rankings: 1/32 in first example,




243/100000 in third, 1/1024 in second and 1/100000 in fourth. This correspondence is not
a coincidence.

A reason for this correspondence can be extracted from expression (16), which is shown
below for the convenience of the reader,

W) = ;?“ T

The key here is the summands. Each summand is the same as the probability of observing
at least one success in N trials. When a state probability is small, more sampling trials
are required before a successful occurrence becomes likely. The rate by which the mean
approaches 2' will be governed by values for the state probabilities. The asymptotic approach
rate can be drastically slowed when state probabilities are small. So, states having the
smallest probabilities of occurrence will be the driving force.

For instance, in the first two examples, each state has the same likelihood of occurrence
— in the 5 component case it is 1/32 and in the 10 component case it is 1/1024. When
taking samples, every state has the same chance of being drawn whether it has or has not
been previously selected. Consider the situation where sampling continues until all states
but one have been drawn. In the five-component case, further draws become equivalent
to Bernoulli sampling where drawing the unselected state has a probability of 1/32 and
drawing of previously selected states has a probability of 31/32. Similarly, the 10 component
case is equivalent to repeated Bernoulli sampling with a probability of 1/1024 for drawing
the unselected state and a probability of 1023/1024 for drawing previously selected states.
Drawing the unselected state will generally be more likely for the case with five components.
Hence, more effort must be expended in the 10 component case than in the 5 component
case to acquire the last unselected state.

The apparent influence that the number of involved components has on sampling is not
exactly correct from a strict perspective. The number does have influence, which can be
enormous, but rather its influence is exhibited indirectly. From the multinomial sampling
distribution, expression (1), state probabilities must sum to unity. For each additional
component, the number of states doubles. Due to the fixed value for the summation of
state probabilities, the likelihood of occurrence for any state decreases as number of states
increases. Hence, the effort in sampling a majority of states or all states will increase because
of smaller state probabilities that is caused by an increased number of components.

In the last two examples, which had the same number of components but different likeli-
hood of individual component loss, the number of trials needed to attain a similar proportion
of all states was much less in the third example where each component has the same loss
probability of 0.7 than in the fourth example where the common component probability was
0.9. The range of state probabilities in the third example was within the range of values in
the fourth example. There was a state having a larger probability in the fourth example that
initially appeared to have influence on the expected number of trials. This appearance of in-
fluence is really false, because states having larger probabilities will generally be drawn more
frequently. As in the other examples, the rate by which the mean asymptoticaily approaches

10




2! will be driven by states having smaller probabilities. The primary cause will be the state
or states having the smallest likelihood of occurrence.

7. Conclusions

In making predictions for live-fire testing, a question can be raised on how many sam-
ples must be taken so that observing all component-damage states is likely. This sampling
question was investigated to demonstrate the nature of the problem involved in making
predictions. As stated in the introduction, no solutions are provided at this time for the
prediction code, SQuASH, just some insights to the sampling problem are presented.

By examining some simple examples, the nature of the sampling problem was demon-
strated. The examples represented idealized situations where both probability of loss for
components is known and independence exists between every pair of components. Although
not presented in this report, calculation of the expected number of states observed could
easily be extended to situations where independence is not present, provided that the struc-
ture of component dependencies is completely specified. Furthermore, a careful reader will
note that knowledge of the probability of loss for components and component independence
or dependence are not absolutely necessary. What is required is just the knowledge of the
number of states and precise value of the probability of occurrence for each state.

Making SQuASH predictions differs from idealized situations in several ways. Neither
component probabilities of loss nor component-damage state probabilities will be known.
Such probabilities are estimated from sampling. Total number of states will be known
only when components are independent. With dependencies between components, the total
number of states having non-zero probabilities will be unknown. Predictions involving states
having low probabilities, whether components are independent or not, will generally require
much more, if not excessive, sampling so that all states can be selected.

In the predictive code, state probabilities, along with the number of damage states with
non-zero probability of occurrence, are not known before any samples are taken. Estimates
for such quantities can be vbtained only after sampling has been completed. The estimated
quantities are precise only if a sufficient number of samples have been selected. A desir-
able upgrade to the predictive code would be some method of accurately measuring these
quantities as sampling is taking place.

Aside from quantities not being completely specified, there is another issue: If all hypo-
thetical outcomes are not generated, there is a risk of erroneously deducing that for some
shot SQuASH is invalid or has serious deficiencies when in reality an experimental outcome
of low probability was actually observed. To avoid making such a spurious judgment, all
possible damage states must be generated. However, the effort involved in attempting to
generate all possible states may not be worth the ensuing cost. This risk versus effort could
be another area for future research.
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